If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+10r-20=0
a = 1; b = 10; c = -20;
Δ = b2-4ac
Δ = 102-4·1·(-20)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{5}}{2*1}=\frac{-10-6\sqrt{5}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{5}}{2*1}=\frac{-10+6\sqrt{5}}{2} $
| 7(2-x)=-5=30 | | x^2+2x−324=2x | | D=3a | | Z-6(10+z)=-10 | | (7x)^(5/4)-35=0 | | 3w+12=39 | | A+d=32 | | -7(s-10)-10s=-83 | | 4x+11=2x-51 | | 24=8u-4u-20 | | x^2-18x+50=-6 | | -5(7m-6)=-1+4m | | (r+9)(r+1)=29 | | 10=-9c+4c-20 | | (4x-4)=33x | | 2x+26=6x+54 | | -6(-2+6x)=-96 | | (9+y)(4y+7)=0 | | 3x=x+82 | | y=4(11)-10 | | 5-(4v+1)=-1-5v | | q+13=56 | | A+32=d | | 2b-(b-1)=b+1 | | (x+5)/(x+1)-x/(x+2)-(x+6)/(x-4)+(x+1)/(x+5)=0 | | 5×n2=45 | | 7x-14=-67 | | 7x-42+29=7x-13 | | 3(5+3n)=9+8n | | 3.5x+2.5=1.5 | | -6=b-25 | | w2=66 |